Pada artikel sebelumnya sudah dibahas identitas trigonometri dasar yang harus dipahami. Sesudah menguasai identitas dasar trigonometri, maka tahap selanjutnya yaitu identitas trigonometri lanjutan yang dikembangkan dari identitas dasar.
Seperti yang kita ketahui bahwa nilai dari perbandingan trigonometri suatu sudut saling terkait dengan sudut lainnya oleh alasannya yaitu itu suatu bentuk persamaan identitas trigonometri sanggup diubah menjadi bentuk yang lebih sederhana atau diubah menjadi bentuk perbandingan trigonometri lainnya.
Pada dasarnya kalau pemahaman kita tentang identitas dasar sudah kuat, maka soal-soal lanjutan yang tingkat kesusahannya lebih tinggi sanggup kita selesaikan dengan gampang. Pada awalnya memang bentuk-bentuk persamaan trigonometri yang didiberikan pada soal terkesan rumit dan membuat pusing, tapi percayalah bahwa dengan banyak latihan dan terus latihan, tiruana duduk perkara akan sanggup diselesaikan. Berikut beberapa teladan soal lanjutan tentang identitas trigonometri.
Seperti yang kita ketahui bahwa nilai dari perbandingan trigonometri suatu sudut saling terkait dengan sudut lainnya oleh alasannya yaitu itu suatu bentuk persamaan identitas trigonometri sanggup diubah menjadi bentuk yang lebih sederhana atau diubah menjadi bentuk perbandingan trigonometri lainnya.
Pada dasarnya kalau pemahaman kita tentang identitas dasar sudah kuat, maka soal-soal lanjutan yang tingkat kesusahannya lebih tinggi sanggup kita selesaikan dengan gampang. Pada awalnya memang bentuk-bentuk persamaan trigonometri yang didiberikan pada soal terkesan rumit dan membuat pusing, tapi percayalah bahwa dengan banyak latihan dan terus latihan, tiruana duduk perkara akan sanggup diselesaikan. Berikut beberapa teladan soal lanjutan tentang identitas trigonometri.
Soal dan Jawaban Identitas Trigonometri
- Sederhanakan bentuk trigonometri (1 + cot2 β) / (cot β . sec2 β).
Pembahasan
Dari cuilan (1 + cot2 β) / (cot β . sec2 β), sederhanakan masing-masing penyebut dan pembilangnya.
1 + cot2 β = cosec2 β
⇒ 1 + cot2 β = 1/sin2 β
cot β . sec2 β = (cos β/ sinβ) . sec2 β
⇒ cot β . sec2 β = (cos β/ sin β).(1/cos2 β)
⇒ cot β . sec2 β = cos β / sin β.cos2 β
Sesudah digabung kembali diperoleh :
(1 + cot2 β) / (cot β . sec2 β) = (1/sin2 β) / (cos β / sinβ.cos2 β)
⇒ (1 + cot2 β) / (cot β . sec2 β) = (1/sin2 β) . (sin β.cos2 β / cos β)
⇒ (1 + cot2 β) / (cot β . sec2 β) = sin β.cos2 β / sin2 β.cos β
⇒ (1 + cot2 β) / (cot β . sec2 β) = cos β / sin β
⇒ (1 + cot2 β) / (cot β . sec2 β) = cot β
Jadi, (1 + cot2 β) / (cot β . sec2 β) = cot β.
- Tentukan nilai dari (sin α - cos α)2 + 2 sin α cos α.
Pembahasan
Karena keterbatasan ruang dan pengkodean, jadi soal di atas dikerjakan masing-masing semoga tidak terlalu panjang.
(sin α - cos α)2 = sin2 α - 2 sin α. cos α + cos2 α
⇒ (sin α - cos α)2 = sin2 α + cos2 α - 2 sin α. cos α
⇒ (sin α - cos α)2 = 1 - 2 sin α. cos α
Selanjutnya :
(sin α - cos α)2 + 2 sin α cos α = 1 - 2 sin α. cos α + 2 sin α cos α
⇒ (sin α - cos α)2 + 2 sin α cos α = 1
Jadi, (sin α - cos α)2 + 2 sin α cos α = 1.
- Buktikan bahwa sec4 α - sec2 α = tan4 α + tan2 α.
Pembahasan
sec4 α - sec2 α = tan4 α + tan2 α
⇒ sec2 α (sec2 α - 1) = tan2 α (tan2 α + 1)
⇒ sec2 α (tan2 α) = tan2 α (sec2 α)
⇒ sec2 α . tan2 α = sec2 α . tan2 α
Jadi, sec4 α - sec2 α = tan4 α + tan2 α = sec2 α . tan2 α.
Terbukti. - Nyatakan setiap bentuk diberikut ke dalam faktor-faktor yang paling sederhana.a. 1 - cos2 β
b. sin2 α - cos2 α
c. tan2 α - 1
d. sin2 α - 2 sin α cos α + cos2 α
Pembahasan
- 1 - cos2 β Dari identitas sin2 β + cos2 β = 1, maka diperoleh :
⇒ 1 - cos2 β = sin2 β
Jadi, 1 - cos2 β = sin2 β. - sin2 α - cos2 α Dari identitas sin2 α + cos2 α = 1, maka sin2 α = 1 - cos2 α.
⇒ sin2 α - cos2 α = 1 - cos2 α - cos2 α
⇒ sin2 α - cos2 α = 1 - 2 cos2 α
Karena 2 cos2 α - 1 = cos 2α, maka 1 - 2 cos2 α = - cos 2α.
⇒ sin2 α - cos2 α = -cos 2α
Jadi, sin2 α - cos2 α = -cos 2α. - tan2 α - 1Dari identitas 1 + tan2 α = sec2 α, maka tan2 α = sec2 α - 1
⇒ tan2 α - 1 = sec2 α - 1 - 1
⇒ tan2 α - 1 = sec2 α - 2 - sin2 α - 2 sin α cos α + cos2 α = sin2 α + cos2 α - 2 sin α cos α⇒ sin2 α - 2 sin α cos α + cos2 α = 1 - 2 sin α cos α⇒ sin2 α - 2 sin α cos α + cos2 α = 1 - sin 2α
Jadi, sin2 α - 2 sin α cos α + cos2 α = 1 - sin 2α .
- 1 - cos2 β
- Buktikan tiap identitas trigonometri diberikut. a. 1/3 sin2 α + 1/3 cos2 α = 1/3
b. 3 cos2 α - 2 = 1 - 3 sin2 α
c. 3 + 5 sin2 α = 8 - 5 cos2 α
Pembahasan- 1/3 sin2 α + 1/3 cos2 α = 1/3⇒ 1/3 (sin2 α + cos2 α) = 1/3
⇒ 1/3 (1) = 1/3
⇒ 1/3 = 1/3
Terbukti.
- 3 cos2 α - 2 = 1 - 3 sin2 α Ingat bahwa sin2 α + cos2 α = 1, maka 3 sin2 α + 3 cos2 α = 3.
Dari 3 sin2 α + 3 cos2 α = 3, maka 3 cos2 α = 3 - 3 sin2 α.
⇒ 3 cos2 α - 2 = 1 - 3 sin2 α
⇒ 3 - 3 sin2 α - 2 = 1 - 3 sin2 α
⇒ 1 - 3 sin2 α = 1 - 3 sin2 α.
Terbukti. - 3 + 5 sin2 α = 8 - 5 cos2 αDari 5 sin2 α + 5 cos2 α = 5, maka 5 sin2 α = 5 - 5 cos2 α.
⇒ 3 + 5 sin2 α = 8 - 5 cos2 α
⇒ 3+ 5 - 5 cos2 α = 8 - 5 cos2 α
⇒ 8 - 5 cos2 α = 8 - 5 cos2 α.
Terbukti.
- 1/3 sin2 α + 1/3 cos2 α = 1/3
Emoticon