BLANTERVIO103

Soal Dan Pembahasan Identitas Trigonometri Lanjutan

Soal Dan Pembahasan Identitas Trigonometri Lanjutan
6/21/2018
Pada artikel sebelumnya sudah dibahas identitas trigonometri dasar yang harus dipahami. Sesudah menguasai identitas dasar trigonometri, maka tahap selanjutnya yaitu identitas trigonometri lanjutan yang dikembangkan dari identitas dasar.

Seperti yang kita ketahui bahwa nilai dari perbandingan trigonometri suatu sudut saling terkait dengan sudut lainnya oleh alasannya yaitu itu suatu bentuk persamaan identitas trigonometri sanggup diubah menjadi bentuk yang lebih sederhana atau diubah menjadi bentuk perbandingan trigonometri lainnya.

Pada dasarnya kalau pemahaman kita tentang identitas dasar sudah kuat, maka soal-soal lanjutan yang tingkat kesusahannya lebih tinggi sanggup kita selesaikan dengan gampang. Pada awalnya memang bentuk-bentuk persamaan trigonometri yang didiberikan pada soal terkesan rumit dan membuat pusing, tapi percayalah bahwa dengan banyak latihan dan terus latihan, tiruana duduk perkara akan sanggup diselesaikan. Berikut beberapa teladan soal lanjutan tentang identitas trigonometri.

Soal dan Jawaban Identitas Trigonometri

  1. Sederhanakan bentuk trigonometri  (1 + cot2 β) / (cot β . sec2 β).

    Pembahasan
    Dari cuilan (1 + cot2 β) / (cot β . sec2 β), sederhanakan masing-masing penyebut dan pembilangnya.
    1 + cot2 β = cosec2 β
    ⇒ 1 + cot2 β = 1/sin2 β

    cot β . sec2 β = (cos β/ sinβ) . sec2 β
    ⇒ cot β . sec2 β = (cos β/ sin β).(1/cos2 β)
    ⇒ cot β . sec2 β = cos β / sin β.cos2 β

    Sesudah digabung kembali diperoleh :
    (1 + cot2 β) / (cot β . sec2 β) = (1/sin2 β) / (cos β / sinβ.cos2 β)
    (1 + cot2 β) / (cot β . sec2 β) = (1/sin2 β) . (sin β.cos2 β / cos β)
    ⇒ (1 + cot2 β) / (cot β . sec2 β) = sin β.cos2 β / sin2 β.cos β
    ⇒ (1 + cot2 β) / (cot β . sec2 β) = cos β / sin β
    ⇒ (1 + cot2 β) / (cot β . sec2 β) = cot β 
    Jadi, (1 + cot2 β) / (cot β . sec2 β) = cot β.


  2. Tentukan nilai dari (sin α - cos α)2 + 2 sin α cos α.

    Pembahasan
    Karena keterbatasan ruang dan pengkodean, jadi soal di atas dikerjakan masing-masing semoga tidak terlalu panjang.
    (sin α - cos α)2 = sin2 α - 2 sin α. cos α +  cos2 α
    ⇒ (sin α - cos α)2 = sin2 α +  cos2 α - 2 sin α. cos α
    ⇒ (sin α - cos α)2 = 1 - 2 sin α. cos α

    Selanjutnya :
    (sin α - cos α)2 + 2 sin α cos α = 1 - 2 sin α. cos α + 2 sin α cos α
    ⇒ (sin α - cos α)2 + 2 sin α cos α = 1
    Jadi, (sin α - cos α)2 + 2 sin α cos α = 1.


  3. Buktikan bahwa sec4 α - sec2 α = tan4 α + tan2 α.

    Pembahasan
    sec4 α - sec2 α = tan4 α + tan2 α
    ⇒ sec2 α (sec2 α - 1) = tan2 α (tan2 α + 1)
    ⇒ sec2 α (tan2 α) = tan2 α (sec2 α)
    ⇒ sec2 α . tan2 α = sec2 α . tan2 α
    Jadi, sec4 α - sec2 α = tan4 α + tan2 α = sec2 α . tan2 α.
    Terbukti.


  4. Nyatakan setiap bentuk diberikut ke dalam faktor-faktor yang paling sederhana.
    a. 1 - cos2 β
    b. sin2 α -  cos2 α
    c. tan2 α - 1
    d. sin2 α - 2 sin α cos α + cos2 α

    Pembahasan
    1. 1 - cos2 β
      Dari identitas sin2 β +  cos2 β = 1, maka diperoleh :
      ⇒ 1 - cos2 β = sin2 β
      Jadi, 1 - cos2 β = sin2 β.

    2. sin2 α -  cos2 α
      Dari identitas sin2 α +  cos2 α = 1, maka sin2 α  = 1 - cos2 α.
      ⇒ sin2 α -  cos2 α = 1 - cos2 α - cos2 α
      ⇒ sin2 α -  cos2 α = 1 - 2 cos2 α
      Karena 2 cos2 α - 1 = cos 2α, maka 1 - 2 cos2 α = - cos 2α.
      ⇒ sin2 α -  cos2 α = -cos 2α
      Jadi, sin2 α -  cos2 α = -cos 2α.

    3. tan2 α - 1
      Dari identitas 1 + tan2 α = sec2 α, maka tan2 α = sec2 α - 1
      ⇒ tan2 α - 1 = sec2 α - 1 - 1
      ⇒ tan2 α - 1 = sec2 α - 2

    4. sin2 α - 2 sin α cos α + cos2 α = sin2 α + cos2 α - 2 sin α cos α
      ⇒ sin2 α - 2 sin α cos α + cos2 α = 1 - 2 sin α cos α
      ⇒ sin2 α - 2 sin α cos α + cos2 α = 1 - sin 2α
      Jadi,  sin2 α - 2 sin α cos α + cos2 α = 1 - sin 2α .


  5. Buktikan tiap identitas trigonometri diberikut.
    a. 1/3 sin2 α + 1/3 cos2 α = 1/3
    b. 3 cos2 α - 2 = 1 - 3 sin2 α
    c. 3 + 5 sin2 α = 8 - 5 cos2 α

    Pembahasan
    1. 1/3 sin2 α + 1/3 cos2 α = 1/3
      ⇒ 1/3 (sin2 α + cos2 α) = 1/3
      ⇒ 1/3 (1) = 1/3
      ⇒ 1/3 = 1/3
      Terbukti.

    2. 3 cos2 α - 2 = 1 - 3 sin2 α
      Ingat bahwa sin2 α + cos2 α = 1, maka 3 sin2 α + 3 cos2 α = 3.
      Dari 3 sin2 α + 3 cos2 α = 3, maka 3 cos2 α = 3 - 3 sin2 α.
      ⇒ 3 cos2 α - 2 = 1 - 3 sin2 α
      ⇒ 3 - 3 sin2 α - 2 = 1 - 3 sin2 α
      ⇒ 1 - 3 sin2 α = 1 - 3 sin2 α.
      Terbukti.
       Pada artikel sebelumnya sudah dibahas identitas trigonometri dasar yang harus dipahami SOAL DAN PEMBAHASAN IDENTITAS TRIGONOMETRI LANJUTAN

    3. 3 + 5 sin2 α = 8 - 5 cos2 α
      Dari 5 sin2 α + 5 cos2 α = 5, maka 5 sin2 α = 5 - 5 cos2 α.
      ⇒ 3 + 5 sin2 α = 8 - 5 cos2 α
      ⇒ 3 + 5 - 5 cos2 α = 8 - 5 cos2 α
      ⇒ 8 - 5 cos2 α = 8 - 5 cos2 α.
      Terbukti.

Share This Article :

TAMBAHKAN KOMENTAR

3612692724025099404