Model soal barisan dan deret yang sering muncul dalam soal ujian nasional antara lain: memilih suku ke-n dari suatu barisan atau deret aritmatika berdasarkan suku ke-n lainnya, memilih suku ke-n dari suatu barisan atau deret geometri berdasarkan suku ke-n lainnya, memilih jumlah ke-n dari barisan atau deret aritmatika jikalau diketahui beberapa suku ke-n, memilih jumlah ke-n dari barisa atau deret geometri jikalau diketahui beberapa suku ke-n, memilih rasio suatu barisan geometri jikalau yang diketahui ialah suku ke-n barisan aritmatika, memilih rasio barisan geometri, memilih suku ke-n suatu barisan aritmatika jikalau suku tengah diketahui, dan lain sebagainya.
Ujian Nasional Matematika - Barisan dan Deret
- (UJIAN NASIONAL 2005/2006)Seorang Ibu membagikan permen kepada 5 orang anaknya berdasarkan hukum deret aritmetika. Semakin muda usia anak semakin banyak permen yang diperolehnya. Jika permen yang diterima anak kedua 11 buah dan anak keempat 19 buah, maka jumlah seluruh permen ialah ...
A. 60 buah
B. 65 buah
C. 79 buah
D. 75 buah
E. 80 buah
Pembahasan :
Menurut konsep deret aritmatika berlaku :
Un = a + (n - 1) b
dengan :
Un = banyaknya suku ke-n
n = banyak suku
a = suku pertama
b = beda
Dari soal diketahui :
U2 = a + (2 - 1)b = a + b = 11
U4 = a + (4 - 1)b = a + 3b = 19
Dari U2 dan U4, sanggup dicari nilai a dan b sebagi diberikut :
a + b = 11 → a = 11 - b → substitusi ke a + 3b = 19
⇒ a + 3b = 19
⇒ 11 - b + 3b = 19
⇒ 2b = 8
⇒ b = 4
Selanjutnya kita peroleh nilai a.
a = 11 - b
⇒ a = 11 - 4
⇒ a = 7
Untuk menghitung jumlah permen sanggup dipakai rumus diberikut :
{2a + (n - 1) b}
dengan :
Sn = jumlah ke-n
n = banyak suku
a = suku pertama
b = beda
Maka jumlah permen dibagikan kepada kelima anak ialah :
⇒ S5 = 5/2 (2.7 + 4.4)
⇒ S5 = 75 buah ---> opsi D
- (UJIAN NASIONAL 2005/2006)Diketahui barisan geometri dengan U1 = 4√x3 dan U4 = x√x. Rasio barisan geometi tersebut ialah ...
A. x2 4√x
B. x2
C. 4√x3
D. √x
E. 4√x
Pembahasan :
Untuk barisan geometri berlaku :
Un = U1 rn-1
dengan :
Un = suku ke-n
U1 = suku pertama
r = rasio
n = banyak suku
Berdasarkan konsep itu maka diperoleh :
U4 = U1 r4-1
⇒ r3 = U4 / U1
⇒ r3 = (x√x) / (4√x3)
⇒ r3 = (x3/2) / (x3/4)
⇒ r3 = x3/2 - 3/4
⇒ r3 = x3/4
⇒ r = (x3/4)1/3
⇒ r = x1/4
⇒ r = 4√x ---> opsi E.
- (UJIAN NASIONAL 2006/2007)Dari suatu barisan aritmatika, suku ketiga ialah 36, jumlah suku kelima dan ketujuh ialah 144. Jumlah sepuluh suku pertama deret tersebut ialah ...
A. 810
B. 660
C. 640
D. 630
E. 315
Pembahasan :
Dari soal diketahui :
U3 = 36
⇒ a + 2b = 36
U5 + U7 =144
⇒ (a + 4b) + (a + 6b) = 144
⇒ 2a + 10b = 144
Dari kedua persamaan tersebut, nilai a dan b ialah :
a + 2b = 36 → a = 36 - 2b → substitusi ke 2a + 10b = 144
⇒ 2a + 10b = 144
⇒ 2(36 - 2b) + 10b = 144
⇒ 72 - 4b + 10b = 144
⇒ 6b = 72
⇒ b = 12
Selanjutnya nilai a diperoleh :
a = 36 - 2b
⇒ a = 36 - 2(12)
⇒ a = 12
Maka Jumlah suku ke-10 ialah :
S10 = 10/2 {2.12 + (10 - 1) .12}
⇒ S10 = 5 {24 + 108}
⇒ S10 =660 ---> opsi B.
- (UJIAN NASIONAL 2006/2007)Seorang pemetik kebun memetik jeruknya setiap hari dan mencatat banyaknya jeruk yang diperik. Ternyata banyaknya jeruk yang dipetik pada hari ke-n memenuhi rumus Un = 50 + 25n. Jumlah jeruk yang sudah dipetik selama 10 hari yang pertama ialah ...
A. 2.000 buah
B. 1.950 buah
C. 1.900 buah
D. 1.875 buah
E. 1.825 buah
Pembahasan :
Berdasarkan Un = 50 + 25n, maka suku pertama ialah :
U1 = 50 + 25 = 75
U10 = 50 + 25(10) = 300
Maka jumlah jeruk yang dipetik selama 10 hari pertama ialah :
S10 = 10/2 (U1 + U10)
⇒ S10 = 5 (75 + 300)
⇒ S10 = 1.875 buah ---> opsi D.
- (UJIAN NASIONAL 2007/2008)Diketahui suku ke-3 dan suku ke-6 suatu deret aritmatika berturut-turut ialah 8 dan 17. Jumlah delapan suku pertama deret tersebut sama dengan ...
A. 100
B. 110
C. 140
D. 160
E. 180
Pembahasan :
U3 = a + 2b = 8
U6 = a + 5b = 17
Nilai a dan b sanggup dihitung dengan cara :
a + 2b = 8 → a = 8 - 2b → substitusi ke a + 5b = 17
⇒ a + 5b = 17
⇒ 8 - 2b + 5b = 17
⇒ 3b = 9
⇒b = 3
Selanjutnya :
a = 8 - 2b
⇒ a = 8 - 2(3)
⇒ a = 2
Maka jumlah delapan suku pertama ialah :
S8 = 8/2 {2.2 + (8 - 1) 3}
⇒ S8 = 4(4 + 21)
⇒ S8 = 100 ---> opsi A.
- (UJIAN NASIONAL 2008/2009)Diketahui suatu barisan aritmatika dengan U3 + U9 + U11 = 75. Suku tengah barisan tersebut ialah 68 dan banyak sukunya 43, maka U43 sama dengan ...
A. 218
B. 208
C. 134
D. 132
E. 131
Pembahasan :
Karena banyak suku 43 maka suku tengahnya ialah U22
U22 = 68
⇒ a + 21b = 68
U3 + U9 + U11 = 75
⇒ (a + 2b) + (a + 8b) + (a + 10b) = 75
⇒ 3a + 20b = 75
Dari dua persamaan di atas diperoleh :
a + 21b = 68 → a = 68 - 21b → substitusi ke persamaan 3a + 20b = 75
⇒ 3a + 20b = 75
⇒ 3 (68 - 21b) + 20b = 75
⇒ 204 - 63b + 20b = 75
⇒ -43b = -129
⇒ b = 3
Selanjutnya cari nilai a.
a = 68 - 21b
⇒ a = 68 - 21(3)
⇒ a = 68 - 63
⇒ a = 5
Maka suku ke-43 ialah :
U41 = a + 42b
⇒ U41 = 5 + 42(3)
⇒ U41 = 5 + 126
⇒ U41 = 131 ---> opsi E
- (UJIAN NASIONAL 2009/2010)Diketahui barisan aritmatika dengan Un ialah suku ke-n. Jika U2 + U15 + U40 = 165, maka U19 sama dengan ...
A. 10
B. 19
C. 28,5
D. 55
E. 82,5
Pembahasan :
U2 = a + b
U15 = a + 14b
U40 = a + 39 b
U2 + U15 + U40 = 165
⇒ a + b + a + 14b + a + 39 b = 165
⇒ 3a + 54b = 165
⇒ a + 18b = 55
Maka diperoleh :
U19 = a + 18b
⇒ U19 = 55 ---> opsi D.
- (UJIAN NASIONAL 2009/2010)Tiga buah bilangan membentuk barisan aritmatika dengan beda 3. Jika suku kedua dikurangi 1 maka terbentuklah barisan geometri dengan jumlah 14. Rasio barisan tersebut ialah ...
A. 4
B. 2
C. ½
D. -½
E. -2
Pembahasan :
U1 = a
U2 = a + 3
U3 = a + 2b = a + 6
Bila U2 dikurangi satu maka terbentuk barisan geometri dengan jumlah 14.
U1 + (U2 - 1) + U3 = 14
⇒ a + (a + 3 - 1) + (a + 6) = 14
⇒ 3a + 8 = 14
⇒ 3a = 6
⇒ a = 2
Karena a = 2, maka diperoleh :
⇒ U1 = 2
⇒ U2 = 2 + 3 -1 = 4
⇒ U3 = 2 + 6 = 8
Maka rasio barisan tersebut ialah :
r = U2/U1 = U3/U2
⇒ r = 4/2 = 8/4
⇒ r = 2 ---> opsi B
- (UJIAN NASIONAL 2010/2011)Suku ke-4 dan ke-9 dari suatu barisan aritmatika berturut-turut ialah 110 dan 150. Suku ke-30 barisan aritmatika tersebut ialah ...
A. 308
B. 318
C. 326
D. 344
E. 354
Pembahasan :
U4 = a + 3b = 110
U9 = a + 8b = 150
Dari kedua persamaan di atas diperoleh :
a + 3b = 110 → a = 110 - 3b → substitusi ke persamaan a + 8b = 150
⇒ a + 8b = 150
⇒ 110 - 3b + 8b = 150
⇒ 5b = 40
⇒ b = 8
Selanjutnya nilai a diperoleh :
a = 110 - 3b
⇒ a = 110 - 3(8)
⇒ a = 110 - 24
⇒ a = 86
Makara suku ke-30 dari barisan itu ialah :
U30 = a + 29b
⇒ U30 = 86 + 29(8)
⇒ U30 = 318 ---> opsi B
- (UJIAN NASIONAL 2011/2012)Jumlah n suku pertama suatu deret aritmatika ditetapkan dengan Sn = 2n2 + 4n. Suku ke-9 deret tersebut ialah ...
A. 30
B. 34
C. 38
D. 42
E. 46
Pembahasan :
Dari konsep deret aritmatika :
S9 = U1 + U2 + U3 + U4 + U5 + U6 + U7 + U8 + U9
⇒ S9 = S8 + U9
Maka suku ke-9 sanggup ditentukan dengan rumus :
U9 = S9 - S8
⇒ U9 = {2(9)2 + 4(9)} - {2(8)2 + 4(8)}
⇒ U9 = 2 {(81 + 2.9) - (64 + 2.8)
⇒ U9 = 2 (81 + 18 - 64 - 16)
⇒ U9 = 2 (19)
⇒ U9 = 38 ---> opsi C.
- (UJIAN NASIONAL 2012/2013)Diketahui suku ke-3 dan ke-8 suatu barisan aritmatika berturut-turut ialah 2 dan -13. Jumlah 20 suku pertama deret tersebut ialah ...
A. -580
B. -490
C. -440
D. -410
E. -380
Pembahasan :
U3 = a + 2b = 2
U8 = a + 7b = -13
Dari dua persamaan di atas diperoleh :
a + 2b = 2 → a = 2 - 2b → substitusi ke persamaan a + 7b = -13
⇒ a + 7b = -13
⇒ 2 - 2b + 7b = -13
⇒ 5b = -15
⇒ b = -3
Selanjutnya :
a = 2 - 2b
⇒ a = 2 - 2(-3)
⇒ a = 2 + 6
⇒ a = 8
Maka jumlah 20 suku pertama ialah :
S20 = 20/2 (2a + (n -1) b)
⇒ S20 = 10 (2.8 + 19.(-3))
⇒ S20 = 10 (16 - 57)
⇒ S20 = 10 (-41)
⇒ S20 = -410 ---> opsi D
- (UJIAN NASIONAL 2007/2008)Sebuah bola tenis dijatuhkan dari ketingian 2 m dan memantul kembali menjadi 4/5 tinggi sebelumnya. Panjang lintasan bola tenis hingga berhenti ialah ...
A. 8 m
B. 16 m
C. 18 m
D. 24 m
E. 32 m
Pembahasan :
Panjang lintasan bola tenis yang memantul dengan rasio p/q tersebut sanggup dihitung dengan rumus :
dengan :
h = ketinggian awal
p/q = rasio
Dari soal diketahui h = 2 m, p = 4 dan q = 5, maka :
⇒ S∞ = 2 (9)
⇒ S∞ = 18 m ---> opsi C
- (UJIAN NASIONAL 2013/2014)Seutas tali dipotong menjadi 5 belahan sehingga panjang tiap-tiap potongan itu membentuk barisan geometri. Jika panjang potongan terpendek ialah 6 cm dan panjang potongan terpanjang ialah 96 cm, maka panjang tali tiruanla ialah ...
A. 96 cm
B. 185 cm
C. 186 cm
D. 191 cm
E. 192 cm
Pembahasan :
n = 5 ---> sebab dipotong menjadi 5 bagian
u1 = a = 6
u5 = 96
Dari dua data tersebut sanggup ditentukan rasionya sebagai diberikut :
u5/u1 = 96/6
⇒ a.r4 / a = 16
⇒ r4 = 16
⇒ r = 4√16
⇒ r = 2
Untuk memilih panjang tali tiruanla sanggup dipakai rumus :
dengan :
Sn = jumlah ke-n
r = rasio
a = suku pertama
n = banyak suku
Maka :
⇒ S5 = 6 (32 - 1)
⇒ S5 = 6 (31)
⇒ S5 = 186 cm ---> opsi C.
Emoticon