BLANTERVIO103

Sistem Pertidaksamaan Linier Dan Kuadrat

Sistem Pertidaksamaan Linier Dan Kuadrat
9/30/2018
Sebelum mengulas sistem pertidaksamaan, akan dibahas terlebih lampau secara tersendiri pertidaksamaan linier dan pertidaksamaan kuadrat dua variabel.
Pertidaksamaan linier dua variabel yaitu suatu pertidaksamaan yang memuat dua variabel dengan pangkat tertinggi satu.
Penyelesaian dari pertidaksamaa linier dua variabel ini ialah gambar kawasan pada grafik Catesius (sumbu-XY) yang dibatasi oleh suatu garis linier.

Untuk lebih jelasnya ikutilah pola soal diberikut ini :
01. gambarlah kawasan penyelesaian pertidaksamaan linier y ≤ –2x + 6, dengan x dan y anggota real.
Jawab


Apabila kawasan penyelesaian pertidaksamaan linier diketahui dan garis batasnya melalui dua titik tertentu, maka pertidaksamaan liniernya sanggup ditentukan.
Jika kedua titik yang diketahui berada pada sumbu-X dan sumbu-Y, maka persamaan liniernya ditentukan dengan rumus:
Untuk lebih jelasnya akan diuraikan pada pola soal diberikut:


Sedangkan pertidaksamaan kuadrat dua variabel (x dan y) ialah suatu pertidaksamaan dengan variabel x mempunyai pangkat tertinggi dua
Secara umum bentuk fungsi kuadrat ialah y = ax2 + bx + c dan grafiknya berbentuk parabola. Untuk menggambar grafiknya, diharapkan langkah-langkah tersendiri, yakni :
(1) Menentukan titik potong dengan sumbu x , syaratnya y = 0
(2) Menentukan titik potong dengan sumbu y, syaratnya x = 0
(3) Menentukan titik maksimum/minimum fungsi, yaitu
(4) Menggambar grafik fungsi

Untuk lebih jelasnya, ikutilah pola soal diberikut ini :

04. Gambarlah kawasan penyelesaian pertidaksamaan kuadrat y > x2 – 8x + 12
Jawab

(1) Tititk potong dengan sumbu-X syarat y = 0
x2 – 8x + 12 = 0
(x – 6)(x – 2) = 0
x = 6 dan x = 2 Titik potongnya (2, 0) dan (6, 0)

(2) Tititk potong dengan sumbu-Y syarat x = 0
y = x2 – 8x + 12
y = (0)2 – 8(0) + 12
y = 12 Titik potongnya (0, 12)

(3) Menentukan titik minimum fungsi y = x2 – 8x + 12


(4) Gambar kawasan penyelesaiannya (Daerah yang diarsir ialah kawasan penyelesaian)


Terkadang suatu fungsi kuadrat sanggup ditentukan kalau diketahui beberapa unsurnya, yaitu
a. Jika fungsi kuadrat diketahui titik potong dengan sumbu x yaitu (x1 , 0) dan (x2 , 0) maka persamaannya ialah f(x) = a(x – x1)(x – x2)
b. Jika suatu fungsi kuadrat diketahui titik baliknya P(p , q), maka persamaannya ialah f(x) = a(x – p)2 + q
Aturan ini digunakan untuk menyusun pertidaksamaan kuadrat kalau diketahui gambar kawasan penyelesaiannya.

Untuk lebih jelasnya, ikutilah pola soal diberikut ini:


Pada sistem pertidaksamaan linier dan kuadrat, kedua pertidaksamaan tersebut (linier dan kuadrat) dipadukan dalam satu sistem koordinat Cartesius. Sehingga kawasan penyelesaiannya ialah irisan dari kawasan penyelesaian pertidaksamaan linier dan pertidaksamaan kuadrat.

Untuk lebih jelasnya ikutilah pola soal diberikut ini:
08. Gambarlah kawasan penyelesaian dari sistem pertidaksamaan 2x + 3y ≥ 12 dan y ≤ –x2 + 2x + 8 dalam tata koordinat Cartesius,

Jawab
Pertama akan digambar kawasan penyelesaian 2x + 3y ≥ 12

Selanjutnya digambar juga kawasan penyelesaian y ≤ –x2 + 2x + 8, dengan langkah langkah :
Menentukan tititk potong dengan sumbu-X syarat y = 0
–x2 + 2x + 8 = 0
x2 – 2x – 8 = 0
(x – 4)(x + 2) = 0
x = –2 dan x = 4 . Titik potongnya (–2 0) dan (4, 0)

Menentukan tititk potong dengan sumbu-Y syarat x = 0
y = –x2 + 2x + 8
y = –(0)2 + 2(0) + 8
y = 8 . Titik potongnya (0, 8)

Menentukan titik maksimum fungsi y = –x2 + 2x + 8

Menggambar kawasan penyelesaiannya (Daerah yang diarsir ialah kawasan penyelesaian)

Irisan dari kedua kawasan penyelesaian tersebut ialah penyelesaian dari sistem pertidaksamaan 2x + 3y ≥ 12 dan y ≤ –x2 + 2x + 8
Gambar wilayahnya ialah sebagai diberikut:


Share This Article :

TAMBAHKAN KOMENTAR

3612692724025099404