BLANTERVIO103

Persamaan Dan Pertidaksamaan Nilai Mutlak Linier Satu Variabel

Persamaan Dan Pertidaksamaan Nilai Mutlak Linier Satu Variabel
9/30/2018

Dari sudut pandang geometri, nilai mutlak dari x ditulis | x |, ialah jarak dari x ke 0 pada garis bilangan real. Karena jarak selalu positif atau nol maka nilai mutlak x juga selalu bernilai positif atau nol untuk setiap x bilangan real.

Secara formal, nilai mutlak x didefinisikan dengan $$\mathrm{\left | x \right |=\left\{\begin{matrix}
\mathrm{{\color{white} -}x\;\;\;\;jika\; x\geq 0}\\ \mathrm{-x\;\;\;\;jika\;x< 0}

\end{matrix}\right.}$$ atau sanggup pula ditulis
| x | = -x    jika x ≥ 0
| x | = -x    jika x < 0

Definisi diatas sanggup kita maknai sebagai diberikut :
Nilai mutlak bilangan positif atau nol ialah bilangan itu sendiri dan nilai mutlak bilangan negatif ialah lawan dari bilangan tersebut.

Sebagai contoh,
| 7 | = 7      | 0 | = 0      | -4 | = -(-4) = 4
Jadi, terperinci bahwa nilai mutlak setiap bilangan real akan selalu bernilai positif atau nol.


Persamaan \(\mathrm{\sqrt{\mathrm{x^{2}}}=x}\) spesialuntuk bernilai benar kalau x ≥ 0. Untuk x < 0, maka \(\mathrm{\sqrt{\mathrm{x^{2}}}=-x}\). Dapat kita tulis $$\mathrm{\sqrt{\mathrm{x^{2}}}=\left\{\begin{matrix}
\mathrm{{\color{white} -}x\;\;\;jika\;\;x\geq 0}\\ \mathrm{-x\;\;\;jika\;\;x<  0}

\end{matrix}\right.}$$ Jika kita perhatikan, bentuk diatas sama persis dengan definisi nilai mutlak x. Oleh karenanya, pernyataan diberikut benar untuk setiap x bilangan real. $$\mathrm{|\,x\,|=\sqrt{\mathrm{x^{2}}}}$$ Jika kedua ruas persamaan diatas kita kuadratkan akan diperoleh $$\mathrm{|\,x\,|^{2}=x^{2}}$$ Persamaan terakhir ini ialah konsep dasar penyelesaian persamaan atau pertidaksamaan nilai mutlak dengan cara menguadratkan kedua ruas. Seperti yang kita lihat, tanda mutlak sanggup hilang kalau dikuadratkan.

Namun, pada artikel ini kita akan lebih serius pada bentuk linier, baik dari perkara ataupun solusi, tanpa melibatkan bentuk kuadrat.


Persamaan dan Pertidaksamaan Nilai Mutlak

Diawal sudah disinggung bahwa nilai mutlak x ialah jarak dari x ke nol pada garis bilangan real. Pernyataan inilah yang akan kita gunakan untuk menemukan solusi dari persamaan dan pertidaksamaan nilai mutlak dari bentuk linier.

| x | = a   dengan a > 0

Persamaan | x | = a artinya jarak dari x ke 0 sama dengan a. Perhatikan gambar diberikut.


Jarak -a ke 0 sama dengan jarak a ke 0, yaitu a. Pertanyaannya ialah dimana x semoga jaraknya ke 0 juga sama dengan a.

Posisi x ditunjukkan oleh titik merah pada gambar diatas, yaitu x = -a atau x = a. Jelas terlihat bahwa jarak dari titik tersebut ke 0 sama dengan a. Jadi, semoga jarak x ke nol sama dengan a, haruslah x = -a atau x = a.

| x | < a  untuk a > 0

Pertaksamaan | x | < a, artinya jarak dari x ke 0 kurang dari a. Perhatikan gambar diberikut.


Posisi x ditunjukkan oleh ruas garis berwarna merah, yaitu himpunan titik-titik diantara -a dan a yang biasa kita tulis -a < x < a. Jika kita ambil sebarang titik pada interval tersebut, sudah dipastikan jaraknya ke 0 kurang dari a. Jadi, semoga jarak x ke 0 kurang dari a, haruslah -a < x < a.

| x | > a  untuk a > 0

Pertaksamaan | x | > a artinya jarak dari x ke 0 lebih dari a. Perhatikan gambar diberikut.


Posisi x ditunjukkan oleh ruas garis berwarna merah yaitu x < -a atau x > a. Jika kita ambil sebarang titik pada interval tersebut, sudah dipastikan jaraknya ke 0 lebih dari a. Jadi, semoga jarak x ke nol lebih dari a, haruslah x < -a atau x > a.

Secara intuitif, uraian-uraian diatas sanggup kita simpulkan sebagai diberikut :

SIFAT : Untuk a > 0 berlaku
a.  | x | = a  ⇔  x = a  atau  x = -a
b.  | x | < a  ⇔  -a < x < a
c.  | x | > a  ⇔  x < -a  atau  x > a


misal 1
Tentukan himpunan penyelesaian dari |2x - 7| = 3

Jawab :
Berdasarkan sifat a :
|2x - 7| = 3  ⇔  2x - 7 = 3  atau  2x - 7 = -3
|2x - 7| = 3  ⇔  2x = 10  atau  2x = 4
|2x - 7| = 3  ⇔  x = 5  atau  x = 2

Jadi, HP = {2, 5}.


misal 2
Tentukan HP dari |2x - 1| = |x + 4|

Jawab :
Berdasarkan sifat a :
|2x - 1| = |x + 4|

⇔  2x - 1 = x + 4  atau  2x - 1 = -(x + 4)
⇔  x = 5  atau  3x = -3
⇔  x = 5  atau  x = -1

Jadi, HP = {-1, 5}.


misal 3
Tentukan himpunan penyelesaian dari |2x - 1| < 7

Jawab :
Berdasarkan sifat b :
|2x - 1| < 7  ⇔  -7 < 2x - 1 < 7
|2x - 1| < 7  ⇔  -6 < 2x < 8
|2x - 1| < 7  ⇔  -3 < x < 4

Jadi, HP = {-3 < x < 4}.


misal 4
Tentukan himpunan penyelesaian dari |4x + 2| ≥ 6

Jawab :
Berdasarkan sifat c :
|4x + 2| ≥ 6  ⇔  4x + 2 ≤ -6  atau  4x + 2 ≥ 6
|4x + 2| ≥ 6  ⇔  4x ≤ -8  atau  4x ≥ 4
|4x + 2| ≥ 6  ⇔  x ≤ -2  atau  x ≥ 1

Jadi, HP = {x ≤ -2  atau  x ≥ 1}.


misal 5
Tentukan penyelesaian dari |3x - 2| ≥ |2x + 7|

Jawab :
Berdasarkan sifat c :
|3x - 2| ≥ |2x + 7|
⇔  3x - 2 ≤ -(2x + 7)  atau  3x - 2 ≥ 2x + 7
⇔  5x ≤ -5  atau  x ≥ 9
⇔  x ≤ -1  atau  x ≥ 9

Jadi, HP = {x ≤ -1  atau  x ≥ 9}


misal 6
Tentukan HP dari 2 < |x - 1| < 4

Jawab :
Ingat : a < x < b  ⇔  x > a  dan  x < b

Jadi, pertaksamaan 2 < |x - 1| < 4 ekuivalen dengan
|x - 1| > 2  dan  |x - 1| < 4

Berdasarkan sifat c :
|x - 1| > 2  ⇔  x - 1 < -2  atau  x - 1 > 2
|x - 1| > 2  ⇔  x < -1  atau  x > 3   ................(1)

Berdasarkan sifat b :
|x - 1| < 4  ⇔  -4 < x - 1 < 4
|x - 1| < 4  ⇔  -3 < x < 5   ............................(2)

Irisan dari (1) dan (2) diperlihatkan oleh garis bilangan diberikut

Jadi, HP = {-3 < x < -1  atau  3 < x < 5}


Menggunakan Definisi untuk Menyelesaikan Persamaan dan Pertidaksamaan Nilai Mutlak

Dalam menuntaskan persamaan dan pertaksamaan nilai mutlak bentuk linier dengan memakai definisi, akan sangat memmenolong kalau bentuk |ax + b| kita jabarkan menjadi
|ax + b| = ax + b       kalau x ≥ -b/a
|ax + b| = -(ax + b)   kalau x < -b/a

Untuk langkah-langkah penyelesaiannya sanggup disimak pada contoh-contoh diberikut.

misal 7
Jabarkan bentuk nilai mutlak diberikut :
a.  |4x - 3|
b.  |2x + 8|

Jawab :
a.  Untuk |4x - 3|
     |4x - 3| = 4x - 3       kalau  x ≥ 3/4
     |4x - 3| = -(4x - 3)   kalau  x < 3/4

b.  Untuk  |2x + 8|
     |2x + 8| = 2x + 8       jika  x ≥ -4
     |2x + 8| = -(2x + 8)   kalau  x < -4


misal 8
Nilai x yang memenuhi persamaan |x - 2| = 2x + 1 adalah...

Jawab :
|x - 2| = x - 2       jika  x ≥ 2
|x - 2| = -(x - 2)   kalau  x < 2

Untuk x ≥ 2
|x - 2| = 2x + 1  ⇔  x - 2 = 2x + 1
|x - 2| = 2x + 1  ⇔  -x = 3
|x - 2| = 2x + 1  ⇔  x = -3
Karena x ≥ 2, maka x = -3 tidak memenuhi

Untuk x < 2
|x - 2| = 2x + 1  ⇔  -(x - 2) = 2x + 1
|x - 2| = 2x + 1  ⇔  -x + 2 = 2x + 1
|x - 2| = 2x + 1  ⇔  -3x = -1
|x - 2| = 2x + 1  ⇔  x = 1/3
Karena x < 2, maka x = 1/3 memenuhi.

Jadi, nilai x yang memenuhi persamaan diatas ialah x = 1/3.


misal 9
Tentukan HP dari |x + 1| > 2x - 4

Jawab :
|x + 1| = x + 1       kalau  x ≥ -1
|x + 1| = -(x + 1)   kalau  x < -1

Untuk x ≥ -1
|x + 1| > 2x - 4  ⇔  x + 1 > 2x - 4
|x + 1| > 2x - 4  ⇔  -x > -5
|x + 1| > 2x - 4  ⇔  x < 5
Irisan dari x ≥ -1 dan x < 5 adalah -1 ≤ x < 5   

Untuk x < -1
|x + 1| > 2x - 4  ⇔  -(x + 1) > 2x - 4
|x + 1| > 2x - 4  ⇔  -x - 1 > 2x - 4
|x + 1| > 2x - 4  ⇔  -3x > -3
|x + 1| > 2x - 4  ⇔  x < 1
Irisan dari x < -1 dan x < 1 adalah x < -1   

Jadi, HP = {x < -1  atau  -1 ≤ x < 5}
Jadi, HP = {x < 5}


misal 10
Nyatakan |x - 4| + |2x + 6| tanpa memakai simbol nilai mutlak

Jawab :
|x - 4| = x - 4 kalau x ≥ 4
|x - 4| = -(x - 4) kalau x < 4

|2x + 6| = 2x + 6 kalau x ≥ -3
|2x + 6| = -(2x + 6) kalau x < -3

Jika interval-interval diatas digambarkan pada garis bilangan akan diperoleh


Untuk x < -3
|x - 4| + |2x + 6| = -(x - 4) - (2x + 6)
|x - 4| + |2x + 6| = -x + 4 - 2x - 6
|x - 4| + |2x + 6| = -3x - 2

Untuk -3 ≤ x < 4
|x - 4| + |2x + 6| = -(x - 4) + (2x + 6)
|x - 4| + |2x + 6| = -x + 4 + 2x + 6
|x - 4| + |2x + 6| = x + 10

Untuk x ≥ 4
|x - 4| + |2x + 6| = (x - 4) + (2x + 6)
|x - 4| + |2x + 6| = x - 4 + 2x + 6
|x - 4| + |2x + 6| = 3x + 2

Dari uraian diatas, kita simpulkan
\(\mathrm{|x-4|+|2x+6|=\left\{\begin{matrix}
\mathrm{-3x-2\;\;\;jika\;\;x< -3\;\;\;\;\;\;}\\
\mathrm{\;{\color{white} -}x+10\;\;\;jika\;-3\leq x<4}\\
\mathrm{{\color{white} -}3x+2\;\;\;jika\;\;x\geq 4\;\;\;\;\;\;\;\;\;}
\end{matrix}\right.}\)



misal 11
Tentukan nilai-nilai x yang memenuhi persamaan
|x + 1| + |2x - 4| = 9

Jawab :
|x + 1| = x + 1       kalau  x ≥ -1
|x + 1| = -(x + 1)   kalau  x < -1

|2x - 4| = 2x - 4       kalau  x ≥ 2
|2x - 4| = -(2x - 4)   kalau  x < 2


Untuk x < -1
|x + 1| + |2x - 4| = 9  ⇔  -(x + 1) - (2x - 4) = 9
|x + 1| + |2x - 4| = 9  ⇔  -x - 1 - 2x + 4 = 9
|x + 1| + |2x - 4| = 9  ⇔  -3x = 6
|x + 1| + |2x - 4| = 9  ⇔  x = -2
alasannya x < -1, maka x = -2 memenuhi.

Untuk -1 ≤ x < 2
|x + 1| + |2x - 4| = 9  ⇔  (x + 1) - (2x - 4) = 9
|x + 1| + |2x - 4| = 9  ⇔  x + 1 - 2x + 4 = 9
|x + 1| + |2x - 4| = 9  ⇔  -x = 4
|x + 1| + |2x - 4| = 9  ⇔  x = -4
alasannya -1 ≤ x < 2, maka x = -4 tidak memenuhi.

Untuk x ≥ 2 
|x + 1| + |2x - 4| = 9  ⇔  (x + 1) + (2x - 4) = 9
|x + 1| + |2x - 4| = 9  ⇔  x + 1 + 2x - 4 = 9
|x + 1| + |2x - 4| = 9  ⇔  3x = 12
|x + 1| + |2x - 4| = 9  ⇔  x = 4
alasannya x ≥ 2, maka x = 4 memenuhi.

Jadi, nilai-nilai x yang memenuhi persamaan diatas adalah x = -2  atau  x = 4.


misal 12
Tentukan HP dari |x - 1| + |x + 2| ≥ 4

Jawab :
|x - 1| = x - 1       kalau  x ≥ 1
|x - 1| = -(x - 1)   kalau  x < 1

|x + 2| = x + 2       kalau  x ≥ -2
|x + 2| = -(x + 2)   kalau  x < -2


Untuk x < -2 
|x - 1| + |x + 2| ≥ 4  ⇔  -(x - 1) - (x + 2) ≥ 4
|x - 1| + |x + 2| ≥ 4  ⇔  -x + 1 - x - 2  ≥ 4
|x - 1| + |x + 2| ≥ 4  ⇔  -2x ≥ 5
|x - 1| + |x + 2| ≥ 4  ⇔  x ≤ -5/2
Irisan dari x < -2 dan x ≤ -5/2 adalah x ≤ -5/2

Untuk -2 ≤ x < 1
|x - 1| + |x + 2| ≥ 4  ⇔  -(x - 1) + (x + 2) ≥ 4
|x - 1| + |x + 2| ≥ 4  ⇔  -x + 1 + x + 2 ≥ 4
|x - 1| + |x + 2| ≥ 4  ⇔  3 ≥ 4  (bukan penyelesaian)

Untuk x ≥ 1 
|x - 1| + |x + 2| ≥ 4  ⇔  (x - 1) + (x + 2) ≥ 4
|x - 1| + |x + 2| ≥ 4  ⇔  2x ≥ 3
|x - 1| + |x + 2| ≥ 4  ⇔  x ≥ 3/2
Irisan dari x ≥ 1 dan x ≥ 3/2 adalah x ≥ 3/2

Jadi, HP = {x ≤ -5/2  atau  x ≥ 3/2}


misal 13
melaluiataubersamaini memakai definisi nilai mutlak, tunjukkan bahwa untuk setiap x bilangan real dengan a > 0 berlaku | x | < a  ⇔  -a < x < a.

Jawab :
Untuk x ≥ 0 maka | x | = x, akibatnya
| x | < a  ⇔  x < a
Karena a > 0, nilai x yang memenuhi adalah
0 ≤ x < a

Jadi, untuk x ≥ 0 dan a > 0 berlaku
| x | < a  ⇔  0 ≤ x < a   .................................(1)

Untuk x < 0 maka | x | = -x, akibatnya
| x | < a  ⇔  -x < a
| x | < a  ⇔  x > -a
Karena a > 0, nilai x yang memenuhi adalah
  -a < x < 0

Jadi, untuk x < 0 dan a > 0 berlaku
| x | < a  ⇔  -a < x < 0   ................................(2)

Dari (1) dan (2) kita simpulkan
Untuk setiap x bilangan real dan a > 0 berlaku
| x | < a  ⇔  -a < x < 0  atau  0 ≤ x < a
| x | < a  ⇔  -a < x < a


Share This Article :

TAMBAHKAN KOMENTAR

3612692724025099404