Operasi aljabar pada polinom mencakup penjumlahan, pengurangan, perkalian dan pertolongan. Namun alasannya ialah operasi proteksi polinom memerlukan kajian yang lebih mendalam, maka proteksi akan diuraikan pada bab tersendiri setelah ini.
Operasi penjumlahan dan pengurangan polinom dilakukan dengan cara menjumlah/mengurang koefisien suku-suku yang memiliki variabel dengan pangkat yang sama. Sedangkan operasi perkalian suku banyak dilakukan dengan cara mengalikan tiruana suku-suku secara bergantian.
Untuk lebih jelasnya, ikutilah pola soal diberikut ini :
01. Diketahui fungsi polinom f(x) = 2x – 4 dan g(x) = 3x2 + 5x – 6 .
Tentukanlah hasil dari
(a) f(x) + g(x)
(b) f2(x) – g(x)
Jawab
(a) f(x) + g(x) = (2x – 4) + (3x2 + 5x – 6)
= 2x – 4 + 3x2 + 5x – 6
= 3x2 + 2x + 5x – 4 – 6
= 3x2 + 7x – 10
(b) f2(x) – g(x) = (2x – 4)2 – (3x2 + 5x – 6)
= (4x2 – 16x + 16) – (3x2 + 5x – 6)
= 4x2 – 16x + 16 – 3x2 – 5x + 6
= 3x2 – 3x2 – 16x –5x + 16 + 6
= x2 – 21x + 22
02. Tentukanlah bentuk sederhana dari (3x – 2)(2x + 5)2
Jawab
(3x – 2)(2x + 5)2 = (3x – 2)(4x2 + 20x + 25)
= (3x)(4x2) + (3x)(20x) + (3x)(25) – (2)(4x2) – (2)(20x) – (2)(25)
= 12x3 + 60x2 + 75x – 8x2 – 40x – 50
= 12x3 + 52x2 + 35x – 50
03. Tentukanlah bentuk sederhana dari (x – 3)2(x + 1) – (x – 3)(x2 – 3x + 2)
Jawab
(x – 3)2(x + 1) – (x – 3)(x2 – 3x + 2)
= (x2 – 6x + 9)(x + 1) – (x – 3)(x2 – 3x + 2)
= [x3 + x2 – 6x2 – 6x + 9x + 9] – [x3 – 3x2 + 2x – 3x2 +9x – 6]
= [x3 – 5x2 + 3x + 9] – [x3 – 6x2 + 11x – 6]
= x3 – 5x2 + 3x + 9 – x3 + 6x2 – 11x + 6
= x2 – 8x + 15
Operasi penjumlahan dan pengurangan polinom dilakukan dengan cara menjumlah/mengurang koefisien suku-suku yang memiliki variabel dengan pangkat yang sama. Sedangkan operasi perkalian suku banyak dilakukan dengan cara mengalikan tiruana suku-suku secara bergantian.
Untuk lebih jelasnya, ikutilah pola soal diberikut ini :
01. Diketahui fungsi polinom f(x) = 2x – 4 dan g(x) = 3x2 + 5x – 6 .
Tentukanlah hasil dari
(a) f(x) + g(x)
(b) f2(x) – g(x)
Jawab
(a) f(x) + g(x) = (2x – 4) + (3x2 + 5x – 6)
= 2x – 4 + 3x2 + 5x – 6
= 3x2 + 2x + 5x – 4 – 6
= 3x2 + 7x – 10
(b) f2(x) – g(x) = (2x – 4)2 – (3x2 + 5x – 6)
= (4x2 – 16x + 16) – (3x2 + 5x – 6)
= 4x2 – 16x + 16 – 3x2 – 5x + 6
= 3x2 – 3x2 – 16x –5x + 16 + 6
= x2 – 21x + 22
02. Tentukanlah bentuk sederhana dari (3x – 2)(2x + 5)2
Jawab
(3x – 2)(2x + 5)2 = (3x – 2)(4x2 + 20x + 25)
= (3x)(4x2) + (3x)(20x) + (3x)(25) – (2)(4x2) – (2)(20x) – (2)(25)
= 12x3 + 60x2 + 75x – 8x2 – 40x – 50
= 12x3 + 52x2 + 35x – 50
03. Tentukanlah bentuk sederhana dari (x – 3)2(x + 1) – (x – 3)(x2 – 3x + 2)
Jawab
(x – 3)2(x + 1) – (x – 3)(x2 – 3x + 2)
= (x2 – 6x + 9)(x + 1) – (x – 3)(x2 – 3x + 2)
= [x3 + x2 – 6x2 – 6x + 9x + 9] – [x3 – 3x2 + 2x – 3x2 +9x – 6]
= [x3 – 5x2 + 3x + 9] – [x3 – 6x2 + 11x – 6]
= x3 – 5x2 + 3x + 9 – x3 + 6x2 – 11x + 6
= x2 – 8x + 15
Emoticon