Integral tak tentu fungsi f(x) ditetapkan oleh :
∫ f(x) dx = F(x) + C
dengan :
f(x) = integran/fungsi yang diintegralkan
F(X) = anti turunan dari f(x)
C = konstanta
Rumus-Rumus Dasar Integral
Untuk f(x) = a dengan a konstan, maka :$$\mathrm{\mathbf{\int a\:dx=ax+C}}$$ misal
1. ∫ 2 dx = 2x + C
2. ∫ \(\frac{1}{2}\) dx = \(\frac{1}{2}\)x + C
Untuk f(x) = axn , n ≠ −1 maka :
$$\mathrm{\mathbf{\int ax^{n}\:dx=\frac{a}{n+1}x^{n+1}+C}}$$ misal
1. ∫ 2x4 dx = ...
Jawab :
⇒ \(\mathrm{\frac{2}{4+1}}\)x4+1 + C
⇒ \(\mathrm{\frac{2}{5}}\)x5 + C
2. ∫ x-6 dx = ...
Jawab :
⇒ \(\mathrm{\frac{1}{-6+1}}\)x-6+1 + C
⇒ \(\mathrm{-\frac{1}{5}}\)x-5 + C
Untuk f(x) = (ax + b)n , n ≠ −1 maka :
$$\mathrm{\mathbf{\int (ax+b)^{n}\:dx=\frac{1}{a(n+1)}x^{n+1}+C}}$$ misal
1. ∫ (2x − 1) 4 dx = ... Jawab :
⇒ \(\mathrm{\frac{1}{2(4+1)}}\)(2x − 1)4+1 + C⇒ \(\mathrm{\frac{1}{10}}\)(2x − 1)5 + C
2. ∫ (x + 1)-7 dx = ...
Jawab :
⇒ \(\mathrm{\frac{1}{1(-7+1)}}\)(x + 1)-7+1 + C
⇒ \(\mathrm{-\frac{1}{6}}\)(x + 1)-6 + C
Untuk f(x) = \(\mathrm{\mathbf{\frac{1}{x}}}\), maka :
$$\mathrm{\int \mathbf{\frac{1}{x}\:dx=ln|x|+C}}$$
Untuk memilih integral yang integrannya memuat bentuk akar atau pecahan, langkah awal yang harus dilakukan yaitu mengubah terlebih lampau integran tersebut ke bentuk eksponen (pangkat).
Berikut beberapa sifat akar dan pangkat yang sering dipakai :
- \(\mathrm{x^{m}.\;x^{n}=x^{m+n}}\)
- \(\mathrm{\frac{x^{m}}{x^{n}}=x^{m-n}}\)
- \(\mathrm{\frac{1}{x^{n}}=x^{-n}}\)
- \(\mathrm{\sqrt{x}=x^{\frac{1}{2}}}\)
- \(\mathrm{x\sqrt{x}=x^{\frac{3}{2}}}\)
- \(\mathrm{\sqrt[\mathrm{n}]{\mathrm{x^{m}}}=x^{\frac{m}{n}}}\)
1. \(\mathrm{\int \sqrt{x}\:dx=}\)
Jawab :
\(\mathrm{\Rightarrow \int x^{\frac{1}{2}}\:dx}\)
\(\mathrm{=\frac{1}{\frac{1}{2}+1}x^{\frac{1}{2}+1}+C}\)
\(\mathrm{=\frac{2}{3}x^{\frac{3}{2}}+C}\)
\(\mathrm{=\frac{2}{3}x\sqrt{x}+C}\)
2. \(\mathrm{\int \frac{1}{x^{2}}\:dx=}\)
Jawab :
\(\mathrm{\Rightarrow \int x^{-2}\:dx}\)
\(\mathrm{=\frac{1}{-2+1}x^{-2+1}+C}\)
\(\mathrm{=-x^{-1}+C}\)
\(\mathrm{=-\frac{1}{x}+C}\)
3. \(\mathrm{\int x\sqrt[3]{\mathrm{x^{2}}}\:dx=}\)
Jawab :
\(\mathrm{\Rightarrow \int x.x^{\frac{2}{3}}\:dx}\)
\(\mathrm{\Rightarrow \int x^{\frac{5}{3}}\:dx}\)
\(\mathrm{=\frac{1}{\frac{5}{3}+1}x^{\frac{5}{3}+1}+C}\)
\(\mathrm{=\frac{3}{8}x^{\frac{8}{3}}+C}\)
\(\mathrm{=\frac{3}{8}\sqrt[3]{x^{8}}+C}\) atau
\(\mathrm{=\frac{3}{8}x^{2}\sqrt[3]{x^{2}}+C}\)
Sifat-Sifat Integral
1. ∫ k f(x) dx = k ∫ f(x) dx (k = konstan)misal
∫ 3x4 dx = 3 ∫ x4 dx
∫ 3x4 dx = 3 . \(\mathrm{\frac{1}{5}x^{5}+C}\)
∫ 3x4 dx = \(\mathrm{\frac{3}{5}x^{5}+C}\)
2. ∫{f(x) ± g(x)} dx = ∫ f(x) dx ± ∫ g(x) dx
∫ (4x2 + 3x − 2) dx = ...
⇒ ∫ 4x2 dx + ∫ 3x dx − ∫ 2 dx
= \(\mathrm{\frac{4}{3}x^{3}+\frac{3}{2}x^{2}-2x+C}\)
misal-misal Latihan Soal Integral Fungsi Aljabar
misal 1
Tentukan integral diberikut !
Tentukan integral diberikut !
a. ∫ (3x7 − Ï€) dx = ...
Jawab :
= \(\mathrm{\frac{3}{7+1}}\)x7+1 − Ï€x + C
= \(\mathrm{\frac{3}{8}}\)x8 − Ï€x + C
b. ∫ (6x5 + 2x3 − x2) dx = ...
Jawab :
\(\mathrm{= \frac{6}{5+1}x^{5+1}+\frac{2}{3+1}x^{3+1}-\frac{1}{2+1}x}^{2+1}+C\)
\(\mathrm{= x^{6}+\frac{1}{2}x^{4}-\frac{1}{3}x}^{3}+C\)
c. \(\mathrm{\int \frac{6x^{5}-2x^{4}+9}{x^{4}}\:dx=...}\)
Jawab :
\(\mathrm{\Rightarrow \int \left (\frac{6x^{5}}{x^{4}}-\frac{2x^{4}}{x^{4}}+\frac{9}{x^{4}} \right )\:dx}\)
\(\mathrm{\Rightarrow \int \left (6x-2+9x^{-4} \right )dx}\)
\(\mathrm{=\frac{6}{1+1}x^{1+1}-2x+\frac{9}{-4+1}x^{-4+1}+C}\)
\(\mathrm{=3x^{2}-2x-3x^{-3}+C}\)
\(\mathrm{=3x^{2}-2x-\frac{3}{x^{3}}+C}\)
d. \(\mathrm{\int \left (\sqrt{x}+\frac{2}{\sqrt{x}} \right )\:dx=...}\)
Jawab :
\(\mathrm{\Rightarrow \int \left ( x^{\frac{1}{2}}+2x^{-\frac{1}{2}} \right )dx}\)
\(\mathrm{=\frac{1}{\frac{1}{2}+1}x^{\frac{1}{2}+1}+\frac{2}{-\frac{1}{2}+1}x^{-\frac{1}{2}+1}+C}\)
\(\mathrm{=\frac{2}{3}x^{\frac{3}{2}}+4x^{\frac{1}{2}}+C}\)
\(\mathrm{=\frac{2}{3}x\sqrt{x}+4\sqrt{x}+C}\)
e. \(\mathrm{\int \left ( x\sqrt{x}-\frac{x}{\sqrt{x}} \right )dx=...}\)
Jawab :
\(\mathrm{\Rightarrow \int \left (x^{\frac{3}{2}}-x^{\frac{1}{2}} \right )dx}\)
\(\mathrm{=\frac{2}{5}x^{\frac{5}{2}}-\frac{2}{3}x^{\frac{3}{2}}+C}\)
\(\mathrm{=\frac{2}{5}x^{2}\sqrt{x}-\frac{2}{3}x\sqrt{x}+C}\)
f. \(\mathrm{\int \left ( \sqrt{x}+\frac{1}{ \sqrt{x}} \right )^{2}\:dx=}\)
Jawab :
\(\mathrm{\Rightarrow \int \left (x+2+\frac{1}{x} \right )\:dx}\)
\(\mathrm{=\frac{1}{1+1}x^{1+1}+2x+ln|x|+C}\)
\(\mathrm{=\frac{1}{2}x^{2}+2x+ln|x|+C}\)
g. \(\mathrm{\int \frac{1}{\sqrt[3]{(3x+1)^{2}}}\:dx}\)
Jawab :
\(\mathrm{\Rightarrow \int (3x+1)^{-\frac{2}{3}}\:dx}\)
\(\mathrm{=\frac{1}{3\left ( -\frac{2}{3}+1 \right )}(3x+1)^{-\frac{2}{3}+1}+C}\)
\(\mathrm{=(3x+1)^{\frac{1}{3}}+C}\)
\(\mathrm{=\sqrt[3]{3x+1}+C}\)
misal 2
Tentukan f(x) bila diketahui :
a. f '(x) = 2x + 2 ; f(0) = −1
Jawab :
f(x) = ∫ f '(x) dx
f(x) = ∫ (2x + 2) dx
f(x) = x2 + 2x + C
f(0) = −1
⇔ (0)2 + 2(0) + C = −1
⇔ C = −1
Jadi, f(x) = x2 + 2x − 1
b. f ''(x) = 12x − 2 ; f(0) = 2 dan f '(1) = 4
Jawab :
f '(x) = ∫ f ''(x) dx
f '(x) = ∫ (12x − 2) dx
f '(x) = 6x2 − 2x + C
f '(1) = 4
⇔ 6(1)2 − 2(1) + C = 4
⇔ C = 0
diperoleh : f '(x) = 6x2 − 2x
f(x) = ∫ f '(x) dx
f(x) = ∫ (6x2 − 2x) dx
f(x) = 2x3 − x2 + C
f(0) = 2
⇔ 2(0)3 − (0)2 + C = 2
⇔ C = 2
Jadi, f(x) = 2x3 − x2 + 2
Emoticon