Identitas trigonometri yaitu persamaan-persamaan yang memuat fungsi trigonometri dan selalu bernilai benar untuk setiap nilai variabel dimana kedua ruas persamaan tersebut terdefinisi.
Berikut identitas-identitas dasar trigonometri yang ialah contoh dalam memilih atau menandakan identitas-identitas trigonometri lainnya.
Identitas Kebalikan (Reciprocal Identity)
sin θ = \(\mathrm{\frac{1}{csc\,\theta}}\)cos θ = \(\mathrm{\frac{1}{sec\,\theta}}\)
tan θ = \(\mathrm{\frac{1}{cot\,\theta}}\)
Identitas Rasio (Quotient Identity)
tan θ = \(\mathrm{\frac{sin\,\theta}{cos\,\theta}}\)cot θ = \(\mathrm{\frac{cos\,\theta}{sin\,\theta}}\)
Identitas Pythagoras (Pythagorean Identity)
sin2θ + cos2θ = 1tan2θ + 1 = sec2θ
1 + cot2θ = csc2θ
Pembuktian identitas trigonometri dilakukan dengan cara mengubah bentuk persamaan pada ruas kiri tanpa mengubah nilainya, sehingga diperoleh bentuk yang persis sama dengan persamaan pada ruas kanan atau berlaku juga sebaliknya.
Mengubah bentuk suatu ruas sanggup dilakukan dengan cara :
- Substitusi identitas trigonometri : identitas kebalikan, rasio dan Phythagoras.
- Manipulasi aljabar : menyederhanakan bentuk pecahan, mengalikan dengan bentuk sekawan, pemfaktoran dan lain-lain.
a2 − b2 = (a + b)(a − b)
a4 − b4 = (a2 + b2)(a2 − b2)
a3 − b3 = (a − b)(a2 + b2 + ab)
a3 + b3 = (a + b)(a2 + b2 − ab)
misal 1
Buktikan : \(\mathrm{csc^{2}x\,sec\,x=sec\,x+cot\,x\,csc\,x}\)
Jawab :
csc2x sec x = (1 + cot2x) sec x
csc2x sec x = sec x + cot2x sec x
csc2x sec x = sec x + cot x . cot x . sec x
csc2x sec x = sec x + cot x \(\mathrm{\cdot \frac{co{\color{red}\not}s\,x}{sin\,x }\cdot \frac{1}{co{\color{red}\not}s\,x}}\)
csc2x sec x = sec x + cot x \(\mathrm{\cdot \frac{1}{sin\,x}}\)
csc2x sec x = sec x + cot x csc x
misal 2
Buktikan : sec4t − sec2t = tan4t + tan2t
Jawab :
sec4t − sec2t = (sec2t)2 − sec2t
sec4t − sec2t = (1 + tan2t)2 − (1 + tan2t)
sec4t − sec2t = 1 + 2tan2t + tan4t − 1 − tan2t
sec4t − sec2t = tan4t + tan2t
misal 3
Buktikan : sin4x − cos4x = 1 − 2cos2x
Jawab :
sin4x − cos4x = (sin2x + cos2x)(sin2x − cos2x)
sin4x − cos4x = 1 . (sin2x − cos2x)
sin4x − cos4x = sin2x − cos2x
sin4x − cos4x = 1 − cos2x − cos2x
sin4x − cos4x = 1 − 2cos2x
misal 4
Buktikan : \(\mathrm{(sec\,x-tan\,x)^{2}=\frac{1-sin\,x}{1+sin\,x}}\)
Jawab :
\(\begin{align}
\mathrm{(sec\,x-tan\,x)^{2}} & =\mathrm{\left ( \frac{1}{cos\,x}-\frac{sin\,x}{cos\,x} \right )^{2}} \\
& = \mathrm{\left ( \frac{1-sin\,x}{cos\,x} \right )^{2}} \\
& = \mathrm{\frac{(1-sin\,x)^{2}}{cos^{2}x}} \\
& = \mathrm{\frac{(1-sin\,x)^{2}}{1-sin^{2}x}} \\
& = \mathrm{\frac{(1-s{\color{red}\not}in\,x)(1-sin\,x)}{(1-s{\color{red}\not}in\,x)(1+sin\,x)}} \\
& = \mathrm{\frac{1-sin\,x}{1+sin\,x}}
\end{align}\)
misal 5
Buktikan : \(\mathrm{\frac{2-sec^{2}x}{sec^{2}x}=1-2sin^{2}x}\)
Jawab :
\(\begin{align}
\mathrm{\frac{2-sec^{2}x}{sec^{2}x}} & = \mathrm{\frac{2}{sec^{2}x}-\frac{sec^{2}x}{sec^{2}x}} \\
& = \mathrm{2\,cos^{2}x-1} \\
& = \mathrm{2(1-sin^{2}x)-1} \\
& = \mathrm{2-2\,sin^{2}x-1} \\
& = \mathrm{1-2\,sin^{2}x}
\end{align}\)
misal 6
Buktikan : \(\mathrm{\frac{1-cos\,x}{sin\,x}=\frac{1}{csc\,x+cot\,x}}\)
Jawab :
\(\begin{align} \mathrm{\frac{1-cos\,x}{sin\,x}} & = \mathrm{\frac{1}{sin\,x}-\frac{cos\,x}{sin\,x}} \\ & = \mathrm{csc\,x-cot\,x} \\ & = \mathrm{(csc\,x-cot\,x)\cdot \frac{csc\,x+cot\,x}{csc\,x+cot\,x}} \\ & = \mathrm{\frac{(csc\,x-cot\,x)(csc\,x+cot\,x)}{csc\,x+cot\,x}} \\ & = \mathrm{\frac{csc^{2}x-cot^{2}x}{csc\,x+cot\,x}} \\ & = \mathrm{\frac{1}{csc\,x+cot\,x}} \end{align}\)
Buktikan : \(\mathrm{\frac{sin\,x}{1+cos\,x}+\frac{1+cos\,x}{sin\,x}=2csc\,x}\)
Jawab :
\(\begin{align}
\mathrm{\frac{sin\,x}{1+cos\,x}+\frac{1+cos\,x}{sin\,x}} & = \mathrm{\frac{1-cos\,x}{1-cos\,x}\cdot \frac{sin\,x}{1+cos\,x}+\frac{1+cos\,x}{sin\,x}} \\
& = \mathrm{\frac{(1-cos\,x)sin\,x}{1-cos^{2}x}+\frac{1+cos\,x}{sin\,x}} \\
& = \mathrm{\frac{(1-cos\,x)si{\color{red}\not}n\,x}{sin^{{\color{red}\not}2}x}+\frac{1+cos\,x}{sin\,x}} \\
& = \mathrm{\frac{1-cos\,x}{sin\,x}+\frac{1+cos\,x}{sin\,x}} \\
& = \mathrm{\frac{2}{sin\,x}} \\
& = \mathrm{2\,csc\,x}
\end{align}\)
misal 8
Buktikan : \(\mathrm{\frac{csc\,x-1}{cot\,x}=\frac{cot\,x}{csc\,x+1}}\)
Jawab :
\(\begin{align}
\mathrm{\frac{csc\,x-1}{cot\,x}} & = \mathrm{\frac{csc\,x-1}{cot\,x}\cdot \frac{csc\,x+1}{csc\,x+1}} \\
& = \mathrm{\frac{csc^{2}x-1}{cot\,x\,(csc\,x+1)}} \\
& = \mathrm{\frac{cot^{{\color{red}\not}2}x}{c{\color{red}\not}ot\,x\,(csc\,x+1)}} \\
& = \mathrm{\frac{cot\,x}{csc\,x+1}}
\end{align}\)
misal 9
Buktikan : \(\mathrm{\frac{cos^{2}x-sin^{2}x}{1-tan^{2}x}=cos^{2}x}\)
Jawab :
\(\begin{align}
\mathrm{\frac{cos^{2}x-sin^{2}x}{1-tan^{2}x}} & = \mathrm{\frac{cos^{2}x-sin^{2}x}{1-tan^{2}x}\cdot \frac{sec^{2}x}{sec^{2}x}} \\
& = \mathrm{\frac{cos^{2}x\cdot sec^{2}x-sin^{2}x\cdot sec^{2}x}{(1-tan^{2}x)\,sec^{2}x}} \\
& = \mathrm{\frac{cos^{2}x\cdot \frac{1}{cos^{2}x}-sin^{2}x\cdot \frac{1}{cos^{2}x}}{(1-tan^{2}x)\,sec^{2}x}} \\
& = \mathrm{\frac{1-{\color{red}\not}tan^{2}x}{(1-{\color{red}\not}tan^{2}x)\,sec^{2}x}} \\
& = \mathrm{\frac{1}{sec^{2}x}} \\
& = \mathrm{cos^{2}x}
\end{align}\)
misal 10
Buktikan : \(\mathrm{\frac{cos^{2}x+2cos\,x+1}{cos\,x+1}=\frac{1+sec\,x}{sec\,x}}\)
Jawab :
\(\begin{align}
\mathrm{\frac{cos^{2}x+2cos\,x+1}{cos\,x+1}} & = \mathrm{\frac{(cos\,x+1)^{{\color{red}\not}2}}{(cos{\color{red}\not}\,x+1)}} \\
& = \mathrm{cos\,x+1} \\
& = \mathrm{(cos\,x+1)\cdot \frac{sec\,x}{sec\,x}} \\
& = \mathrm{\frac{cos\,x\,sec\,x+sec\,x}{sec\,x}} \\
& = \mathrm{\frac{cos\,x\cdot \frac{1}{cos\,x}+sec\,x}{sec\,x}} \\
& = \mathrm{\frac{1+sec\,x}{sec\,x}}
\end{align}\)
misal 11
Buktikan : \(\mathrm{\sqrt{ \frac{1+cos\,x}{1-cos\,x}}=csc\,x+cot\,x}\)
Jawab :
\(\begin{align}
\mathrm{\sqrt{ \frac{1+cos\,x}{1-cos\,x}}} & =\mathrm{\sqrt{ \frac{1+cos\,x}{1-cos\,x}\cdot \frac{1+cos\,x}{1+cos\,x}}} \\
& = \mathrm{\sqrt{ \frac{(1+cos\,x)^{2}}{1-cos^{2}x}}} \\
& = \mathrm{\sqrt{ \frac{(1+cos\,x)^{2}}{sin^{2}x}}} \\
& = \mathrm{\frac{1+cos\,x}{sin\,x}} \\
& = \mathrm{\frac{1}{sin\,x}+\frac{cos\,x}{sin\,x}} \\
& = \mathrm{csc\,x+cot\,x}
\end{align}\)
misal 12
Buktikan : \(\mathrm{\frac{sin^{3}x+cos^{3}x}{sin\,x+cos\,x}=1-sin\,x\,cos\,x}\)
Jawab :
\(\begin{align}
\mathrm{\frac{sin^{3}x+cos^{3}x}{sin\,x+cos\,x}} & = \mathrm{\frac{(sin\,x{\color{red}\not}+cos\,x)(sin^{2}x+cos^{2}x-sin\,x\,cos\,x)}{(sin\,x{\color{red}\not}+cos\,x)}} \\
& = \mathrm{sin^{2}x+cos^{2}x-sin\,x\,cos\,x} \\
& = \mathrm{1-sin\,x\,cos\,x} \\
\end{align}\)
Perlu diketahui bahwa pembuktian identitas trigonometri sanggup dilakukan dengan cara yang tidak sama-beda, tergantung taktik yang digunakan.
Semakin banyak pembuktian yang dilakukan, kita akan menemukan taktik terbaik dalam memilih konsep apa yang digunakan dan konsep mana yang dilampaukan, sehingga pembukitan menjadi lebih efisien.
Latihan Soal Identitas Trigonometri
Latihan 1Buktikan setiap identitas diberikut!
a. tan x + cot x = sec x csc x
b. sec x − tan x sin x = cos x
c. cos x(csc x + tan x) = cot x + sin x
Latihan 2
Buktikan setiap identitas diberikut!
a. \(\mathrm{\frac{1-sin\,x}{cos\,x}=sec\,x-tan\,x}\)
b. \(\mathrm{\frac{sec\,x-1}{sec\,x}=1-cos\,x}\)
c. \(\mathrm{\frac{sin\,x-sec\,x}{tan\,x}=cos\,x-csc\,x}\)
Latihan 3
Buktikan setiap identitas diberikut!
a. \(\mathrm{sin^{4}x-cos^{4}x=sin^{2}x-cos^{2}x}\)
b. \(\mathrm{sec^{4}x-tan^{4}x=sec^{2}x+tan^{2}x}\)
c. \(\mathrm{csc^{4}x-cot^{4}x=csc^{2}x+cot^{2}x}\)
Latihan 4
Buktikan setiap identitas diberikut!
a. \(\mathrm{cos^{2}x-sin^{2}x=2cos^{2}x-1}\)
b. \(\mathrm{cos^{2}x-sin^{2}x=1-2sin^{2}x}\)
c. \(\mathrm{1-tan^{2}x=2-sec^{2}x}\)
d. \(\mathrm{cot^{2}x-1=csc^{2}x-2}\)
Latihan 5
Buktikan setiap identitas diberikut!
a. \(\mathrm{\frac{sin^{2}x-cos^{2}x}{sin\,x+cos\,x}=sin\,x-cos\,x}\)
b. \(\mathrm{\frac{1-tan^{2}x}{1+tan\,x}=1-tan\,x}\)
c. \(\mathrm{\frac{cos^{4}x-sin^{4}x}{cos\,x+sin\,x}=cos\,x-sin\,x}\)
Latihan 6
Buktikan setiap identitas diberikut!
a. \(\mathrm{\frac{cos\,x}{1-sin\,x}=\frac{1+sin\,x}{cos\,x}}\)
b. \(\mathrm{\frac{cos\,x}{1-sin\,x}=\frac{1}{sec\,x-tan\,x}}\)
c. \(\mathrm{\frac{1+sin\,x}{cos\,x}=\frac{1}{sec\,x-tan\,x}}\)
Latihan 7
Buktikan setiap identitas diberikut!
a. tan2x sin2x = tan2x − sin2x
b. sec2x + cot2x = tan2x + csc2x
c. cos4x − sin4θ + 1 = 2cos2θ
d. cos4x − cos2x = sin4x − sin2x
e. \(\mathrm{\frac{sec^{2}x-tan^{2}x}{csc\,x}=sin\,x}\)
f. \(\mathrm{\frac{1+tan^{2}x}{1+cot^{2}x}=tan^{2}x}\)
g. \(\mathrm{\frac{cos^{2}x-1}{cos\,x}=-tan\,x\,sin\,x}\)
h. \(\mathrm{\frac{cos^{4}x-sin^{4}x}{sin^{2}x}=cot^{2}x-1}\)
i. \(\mathrm{\frac{1-tan^{2}x}{1+tan^{2}x}=2cos^{2}x-1}\)
j. \(\mathrm{1-\frac{sin^{2}x}{1+cos\,x}=cos\,x}\)
k. \(\mathrm{\frac{cos\,x}{1-sin\,x}=tan\,x+sec\,x}\)
l. \(\mathrm{\frac{1+tan\,x}{1+cot\,x}=tan\,x}\)
m. \(\mathrm{\frac{1}{tan\,x}+tan\,x=sec\,x\,csc\,x}\)
n. \(\mathrm{\frac{csc\,x-1}{1-sin\,x}=csc\,x}\)
o. \(\mathrm{\frac{csc\,x}{cot\,x+tan\,x}=cos\,x}\)
p. \(\mathrm{\frac{sec\,t\;sin\,t}{tan\,t+cot\,t}=sin^{2}t}\)
q. \(\mathrm{\frac{1+cos\,x}{sin\,x}=\frac{sin\,x}{1-cos\,x}}\)
r. \(\mathrm{\frac{sin\,x-cos\,x}{sin\,x}+\frac{cos\,x-sin\,x}{cos\,x}=2-sec\,x\,csc\,x}\)
s. \(\mathrm{\frac{cos\,x}{1-sin\,x}+\frac{1-sin\,x}{cos\,x}=2sec\,x}\)
t. \(\mathrm{\frac{1}{csc\,x-cot\,x}-csc\,x=csc\,x-\frac{1}{csc\,x+cot\,x}}\)
u. \(\mathrm{\frac{cos\,x}{1-tan\,x}+\frac{sin\,x}{1-cot\,x}=sin\,x+cos\,x}\)
v. \(\mathrm{\left ( csc\,x-cot\,x \right )^{2}=\frac{sec\,x-1}{sec\,x+1}}\)
w. \(\mathrm{\frac{cos\,x\,cot\,x}{1-sin\,x}-1=csc\,x}\)
x. \(\mathrm{\frac{sin^{6}x+cos^{6}x}{1-sin^{2}x}=sec^{2}x-3sin^{2}x}\)
y. \(\mathrm{\frac{tan\,x+sec\,x-1}{tan\,x-sec\,x+1}=tan\,x+sec\,x}\)
z. \(\mathrm{\sqrt{ \frac{csc\,x-1}{csc\,x+1}}=\frac{cos\,x}{sin\,x+1}}\)
Emoticon