Sama halnya menyerupai nilai perbandingan sinus dan cosinus, kita juga sanggup memilih nilai perbandingan tangen suatu sudut yang tidak diketahui dengan memanfaatkan nilai tangen sudut relasinya. Sesuai dengan identitas trigonometri, intinya nilai tangen sebuah sudut bekerjasama dengan nilai sinus dan cosinusnya.
Oleh lantaran itu, saat nilai sinus atau cosinus dari suatu sudut diketahui, maka kita sanggup menghitung nilai tangen sudut tersebut. Tak spesialuntuk itu, kita juga sanggup menghitung nilai tangen suatu sudut yang mempunyai korelasi dengan sudut yang diketahui.
Sebagai contoh, kita sanggup memanfaatkan rumus tan (30o + 45o) atau tan (120o - 45o) untuk menghitung tan 75o. Prinsipnya sama menyerupai pembahasan sebelumnya, yaitu dengan memanfaatkan identitas trigonometri dan korelasi antar sudut. Itu sebabnya akan sangat memmenolong kalau anda sudah memahami nilai-nilai trigonometri sudut-sudut berelasi.
Oleh lantaran itu, saat nilai sinus atau cosinus dari suatu sudut diketahui, maka kita sanggup menghitung nilai tangen sudut tersebut. Tak spesialuntuk itu, kita juga sanggup menghitung nilai tangen suatu sudut yang mempunyai korelasi dengan sudut yang diketahui.
Sebagai contoh, kita sanggup memanfaatkan rumus tan (30o + 45o) atau tan (120o - 45o) untuk menghitung tan 75o. Prinsipnya sama menyerupai pembahasan sebelumnya, yaitu dengan memanfaatkan identitas trigonometri dan korelasi antar sudut. Itu sebabnya akan sangat memmenolong kalau anda sudah memahami nilai-nilai trigonometri sudut-sudut berelasi.
Ketika menemukan soal-soal yang berkaitan dengan rumus tangen, cobalah untuk mengubah bentuk soal menjadi sedemikian rupa mendekati sudut relasinya. Usahakan semoga bentuk tersebut diubah ke dalam sudut-sudut istimewa sehingga kita sanggup memilih nilainya.
Biasanya, kalau bentuk soal tidak sanggup disederhanakan dalam bentuk sudut istimewa, maka kita spesialuntuk diminta untuk menyederhanakan bentuk tersebut menjadi sudut relasinya yang paling sederhana tanpa menghitung nilainya.
Kumpulan Soal dan Pembahasan
- Tanpa memakai kalkulator atau tabel trigonometri, hitunglah nilai eksak dari :
- tan 15o
- tan 75o
Pembahasan :
- tan 15o = tan (45o − 30o)⇒
⇒
⇒
⇒ tan 15o = 2 − √3
Jadi, tan 15o = 2 − √3. - tan 75o = tan (45o + 30o)⇒
⇒
⇒
⇒ tan 75o = 2 + √3
Jadi, tan 75o = 2 + √3.
- Dalam segitiga ABC, diketahui sin C = ⅗ dan tan A tan B = 5. Hitunglah nilai dari :
- tan (A + B)
- tan A + tan B
Pembahasan :
Karena sin C = , maka tan C = ¾.
Ingat bahwa dalam segitiga, jumlah sudutnya ialah 180o, sehingga diperoleh : C = 180o − (A + B).
- tan C = (180o − (A + B)) tan (180o − (A + B)) = ¾
⇒
Ingat bahwa tan 180o = 0.
⇒ - tan (A + B) = ¾
⇒ tan (A + B) = -¾
Jadi, tan (A + B) = -¾ . - tan (A + B) = ¾⇒⇒ tan A + tan B = ¾ (1 − tan A. tan B)
Pada soal diketahui tan A tan B = 5, maka :
⇒ tan A + tan B = ¾ (1 − 5)
⇒ tan A + tan B = 3
Jadi, tan A + tan B = 3.
- Jika diketahui tan 10o = k, buktikan bahwa :
- tan 55o
- tan 50o
Pembahasan :
- tan 55o = tan (45o + 10o)⇒
⇒
⇒ - tan 50o = tan (60o − 10o)⇒
⇒
⇒
- Tunjukkan bahwa nilai eksak dari :
- tan (-15o) = (√3 - 2)
- tan (105o) = -(√3 + 2)
Pembahasan :
- tan (-15o) = (√3 - 2)⇒ tan (30o − 45o) = (√3 - 2)
⇒
⇒
⇒
⇒
⇒ (√3 − 2) = (√3 − 2)
Terbukti. - tan (105o) = -(√3 + 2)⇒ tan (60o + 45o) = -(√3 + 2)
⇒
⇒
⇒
⇒
⇒ -(√3 − 2) = -(√3 + 2)
Terbukti.
- Jika tan α = ½ dan tan β = ⅓ , hitunglah tan (α + β).
Pembahasan :
⇒
⇒
⇒
⇒
⇒ tan (α + β) = 1
Jadi, tan (α + β) = 1.
Emoticon