Perbandingan trigonometri sudut berelasi ialah ekspansi dari definisi dasar trigonometri tentang kesebangunan pada segitiga siku-siku yang spesialuntuk memenuhi untuk sudut kuadran I atau sudut lancip (0 − 90°).
melaluiataubersamaini memakai sudut-sudut relasi, kita sanggup menghitung nilai perbandingan trigonometri untuk sudut-sudut pada kuadran lainnya, bahkan untuk sudut yang lebih dari 360°, termasuk juga sudut-sudut negatif.
Sudut Relasi Kuadran I
Untuk setiap α lancip, maka (90° − α) akan menghasilkan sudut-sudut kuadran I. Dalam trigonometri, kekerabatan sudut-sudut tersebut ditetapkan sebagai diberikut :sin (90° − α) = cos α
cos (90° − α) = sin α
tan (90° − α) = cot α
Sudut Relasi Kuadran II
Untuk setiap α lancip, maka (90° + α) dan (180° − α) akan menghasilkan sudut-sudut kuadran II. Dalam trigonometri, kekerabatan sudut-sudut tersebut ditetapkan sebagai diberikut :cos (90° + α) = -sin α
tan (90° + α) = -cot α
sin (180° − α) = sin α
cos (180° − α) = -cos α
tan (180° − α) = -tan α
Sudut Relasi Kuadran III
Untuk setiap α lancip, maka (180° + α) dan (270° − α) akan menghasilkan sudut kuadran III. Dalam trigonometri, kekerabatan sudut-sudut tersebut ditetapkan sebagai diberikut :sin (180° + α) = -sin α
cos (180° + α) = -cos α
tan (180° + α) = tan α
sin (270° − α) = -cos α
cos (270° − α) = -sin α
tan (270° − α) = cot α
Sudut Relasi Kuadran IV
Untuk setiap α lancip, maka (270° + α) dan (360° − α) akan menghasilkan sudut kuadran IV. Dalam trigonometri, kekerabatan sudut-sudut tersebut ditetapkan sebagai diberikut :sin (270° + α) = -cos α
cos (270° + α) = sin α
tan (270° + α) = -cot α
sin (360° − α) = -sin α
cos (360° − α) = cos α
tan (360° − α) = -tan α
Jika kita perhatikan, rumus-rumus diatas mempunyai contoh yang hampir sama, oleh karenanya sangatlah tidak bijak kalau kita harus menghapalnya satu per satu. Ada 2 hal yang perlu diperhatikan, yaitu sudut kekerabatan yang digunakan dan tanda untuk tiap-tiap kuadran.
Untuk kekerabatan (90° ± α) atau (270° ± α), maka :
sin → cos
cos → sin
tan → cot
Untuk kekerabatan (180° ± α) atau (360° ± α), maka :
sin = sin
cos = cos
tan = tan
Tanda untuk masing-masing kuadran :
Kuadran I (0 − 90°) : tiruana positif
Kuadran II (90° − 180°) : sinus positif
Kuadran III (180° − 270°) : tangen positif.
Kuadran IV (270° − 360°) : cosinus positif
misal 1
Untuk setiap perbandingan trigonometri diberikut, nyatakan dalam perbandingan trigonometri sudut komplemennya !
sin 20°
tan 40°
cos 53°
Jawab :
sin 20° = sin (90° − 70°)
sin 20° = cos 70°
tan 40° = tan (90° − 50°)
tan 40° = cot 50°
cos 53° = cos (90° − 37°)
cos 53° = sin 37°
Jika kita perhatikan sin bermetamorfosis cos, tan bermetamorfosis cot dan cos bermetamorfosis sin dikarenakan kekerabatan yang dipakai ialah (90° − α) dan ketiga perbandingan trigonometri diatas bernilai positif, alasannya ialah sudut 20°, 40° dan 53° berada di kuadran I.
misal 2
Nyatakan setiap perbandingan trigonometri diberikut dalam sudut 37° !
tan 143°
sin 233°
cos 323°
Jawab :
Sudut 143° terletak pada kuadran II, sehingga tan 143° bernilai negatif.
tan 143° = tan (180° − 37°)
tan 143° = -tan 37°
Sudut 233° terletak pada kuadran III, sehingga sinus bernilai negatif.
sin 233° = sin (270° − 37°)
tan 233° = -cos 37°
Perhatikan bahwa sin bermetamorfosis cos alasannya ialah kekerabatan yang dipakai (270° − α)
Sudut 323° terletak pada kuadran IV, sehingga cosinus bernilai positif.
cos 323° = cos (360° − 37°)
cos 323° = cos 37°
misal 3
Tanpa memakai kalkulator, tentukan nilai dari \(\mathrm{\frac{sin\,100^{\circ}-cos\,190^{\circ}}{cos\,350^{\circ}-sin\,260^{\circ}}}\)
Jawab :
sin 100° = sin (90° + 10°) = cos 10°
cos 190° = cos (180° + 10°) = -cos 10°
cos 350° = cos (360° − 10°) = cos 10°
sin 260° = sin (270° − 10°) = -cos 10°
Sehingga :
\(\mathrm{\frac{sin\,100^{\circ}-cos\,190^{\circ}}{cos\,350^{\circ}-sin\,260^{\circ}}=\frac{cos\,10^{\circ}-(-cos\,10^{\circ})}{cos\,10^{\circ}-(-cos\,10^{\circ})} =\frac{2\,cos\,10^{\circ}}{2\,cos\,10^{\circ}}=1 }\)
misal 4
Jika (x + 20°) ialah sudut lancip, tentukan nilai dari \(\mathrm{\frac{tan\,(x+110^{\circ})}{2\,cot\,(x+20^{\circ})}}\)
Jawab :
tan (x + 110°) = tan (90° + (x + 20°))
Karena (x + 20°) lancip, maka (90° + (x + 20°)) ialah sudut kuadran II, sehingga tangen bernilai negatif.
tan (90° + (x + 20°)) = -cot (x + 20°)
akibatnya
\(\mathrm{\frac{tan\,(x+110^{\circ})}{2\,cot\,(x+20^{\circ})}=\frac{-cot\,(x+20^{\circ})}{2\,cot\,(x+20^{\circ})}=-\frac{1}{2}}\)
misal 5
Diketahui cot (x + 36°) = tan 2x. Jika 2x ialah sudut lancip, tentukan nilai x !
Jawab :
cot (x + 36°) = tan 2x
Karena 2x sudut lancip, pastilah 2x terletak dikuadran I. melaluiataubersamaini memakai kekerabatan sudut kuadran I, maka :
tan 2x = cot (90° − 2x)
Sehingga
cot (x + 36°) = cot (90° − 2x)
x + 36 = 90° − 2x
3x = 54
x = 18
misal 6
Tentukan nilai dari setiap perbandingan trigonometri diberikut !
a. cos 135°
Jawab :
Sudut 135° terletak di kuadran II, sehingga cosinus bernilai negatif.
cos 135° = cos (180 − 45°)
cos 135° = -cos 45°
cos 135° = -\(\frac{1}{2}\)√2
b. tan 120°
Jawab :
Sudut 120° terletak di kuadran II, sehingga tangen bernilai negatif.
tan 120° = tan (180 − 60°)
tan 120° = -tan 60°
tan 120° = -√3
c. sin 210°
Jawab :
Sudut 210° terletak di kuadran III, sehingga sinus bernilai negatif.
sin 210° = sin (180° + 30°)
sin 210° = -sin 30°
sin 210° = -\(\frac{1}{2}\)
d. tan 225°
Jawab :
Sudut 225° terletak di kuadran III, sehingga tangen bernilai positif.
tan 225° = tan (180° + 45°)
tan 225° = tan 45°
tan 225° = 1
e. cos 315°
Jawab :
Sudut 315° terletak di kuadran IV, sehingga cosinus bernilai positif.
cos 315° = cos (360° − 45°)
cos 315° = cos 45°
cos 315° = \(\frac{1}{2}\)√2
f. sin 300°
Jawab :
Sudut 300° terletak di kuadran IV, sehingga sinus bernilai negatif.
sin 300° = sin (360° − 60°)
sin 300° = -sin 60°
sin 300° = -\(\frac{1}{2}\)√3
g. sin 150° dan csc 150°
Jawab :
Sudut 150° terletak di kuadaran II, sehingga sinus bernilai positif.
sin 150° = sin (180 − 30°)
sin 150° = sin 30°
sin 150° = \(\frac{1}{2}\)
csc 150° = \(\mathrm{\frac{1}{sin\,150^{\circ}}}\)
csc 150° = \(\frac{1}{\frac{1}{2}}\)
csc 150° = 2
h. cos 240° dan sec 240°
Jawab :
Sudut 240° terletak di kuadran III, sehingga cosinus bernilai negatif.
cos 240° = cos (180° + 60°)
cos 240° = -cos 60°
cos 240° = -\(\frac{1}{2}\)
sec 240° = \(\mathrm{\frac{1}{cos\,240^{\circ}}}\)
sec 240° = \(\frac{1}{-\frac{1}{2}}\)
sec 240° = -2
i. tan 330° dan cot 330°
Jawab :
Sudut 330° terletak di kuadran IV, sehingga tangen bernilai negatif.
tan 330° = tan (360° − 30°)
tan 330° = -tan 30°
tan 330° = -\(\frac{1}{3}\)√3
cot 330° = \(\mathrm{\frac{1}{tan\,330^{\circ}}}\)
cot 330° = \(\mathrm{\frac{1}{-\frac{1}{3}\sqrt{3}}}\)
cot 330° = -√3
Perbandingan Trigonometri Sudut Negatif
sin (-α) = -sin αcos (-α) = cos α
tan (-α) = -tan α
misal 7
Tentukan nilai dari :
sin (-30°)
cos (-135°)
tan (-330°)
Jawab :
sin (-30°) = -sin 30°
sin (-30°) = -\(\frac{1}{2}\)
cos (-135°) = cos 135° (K.II cos negatif)
cos (-135°) = cos (180° − 45°)
cos (-120°) = -cos 45°
cos (-120°) = -\(\frac{1}{2}\)√2
tan (-330°) = -tan 330° (K.IV tan negatif)
tan (-330°) = -{tan (360° − 30°)}
tan (-300°) = -{-tan 30°}
tan (-300°) = tan 30°
tan (-300°) = \(\frac{1}{3}\)√3
Perbandingan Trigonometri Sudut > 360°
Untuk n bilangan bundar maka :sin (α + n.360°) = sin α
cos (α + n.360°) = cos α
tan (α + n.360°) = tan α
misal 8
Tentukan nilai dari sin 780°
Jawab :
sin 780° = sin (60° + 2. 360°)
sin 780° = sin 60°
sin 780° = \(\frac{1}{2}\)√3
misal 9
Tentukan nilai dari tan 690°
Jawab :
tan 690° = tan (330° + 1. 360°)
tan 690° = tan 330° (K.IV tan negatif)
tan 690° = tan (360° − 30°)
tan 690° = -tan 30°
tan 690° = -\(\frac{1}{3}\)√3
atau
tan 690° = tan (-30° + 2. 360°)
sin 405° = tan (-30°)
sin 405° = -tan 30°
sin 405° = -\(\frac{1}{3}\)√3
misal 10
Tentukan nilai dari cos 1200°
Jawab :
cos 1200° = cos (120° + 3. 360°)
cos 1200° = cos 120° (K.II cos negatif)
cos 1200° = cos (180° − 60°)
cos 1200° = -cos 60°
cos 1200° = -\(\frac{1}{2}\)
Emoticon